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1 A Result

Defination 1 Let T'(x) be a formal power series. Define Supp(T(x))
to be the set of the indices of nonzero coefficients of T(x). Define

d = min(Supp(T(z))), g = ged(Supp(T'(z)) — d) (Supp(T'(z)) — d
means subtract d from each element of the set).

Eg.For the trees with 0 or 2 children at each vertex,
Supp={1,3,5,7,9,... }, d=1, q=2.

Proposition 1 LetT(z) € xR>[(z)], E(z,y) € R>o[(x,y)] with £(0,0) =
0 and satisfy

o T'(x) = FE(x,T(x)) as formal power series,
e 0 <p<oo, T(p) < oo for p the radius of convergence of T'(x),
e E(x,y) has a term of deg > 2 in v,

dE(z.y dE(p,T(p))

) : : .
o — = # 0 (so since the coefficients are nonnegative, —=—F= £

0),
e Jde > 0 such that E(p+¢,T(p) +¢) < .
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Then [¢"]T(z) ~ Cp~"n"2 is true for n = d mod p with d,q as
above, and [x"]|T(x) = 0 otherwise.

This is a consequence of the 2 results from last time.
The only thing which is outstanding is to check where the singular-
ities are on the circle of convergence.

So to prove the proposition, it suffices to prove

Lemma 1 Let E.T,d,q be as in the propostion. Then the set of sin-
gularities of T on the circle of convergence is {z : 24 = p}.

Proof. By the def. of d,q, we can write T(z) = 29V (2%) for some
formal power series V().
Thus by Pringsheim’s Theorem we have that p is a singularity, and

every z with z¢ = p? is a singularity.

If z is a singularity on the circle of convergence, then the implicit

function theorem must fail, so
d(y—FE(x, . dE(z2,T(z))
(y dy( y))|x:Z’y:T(z) 0= (dy( ) _ 1,
dE(zT(z)) _ dE(p,T(p))
dy dy
[dE aT(x ))]) _

but p is also a singularity, so
Let p = ged (Supp
Again the coefficients are all nonnegative, so the set of singularities

on the circle of convergence is contained in {z : 2 = pP}. So {2z : 29 =
py S{z: 2" = o}, dlp.

Now just need to check p < q.
Write out 44 xy = > E,(x)nT(x)"!. But also dEC(lz’y) = U(a?) for

n>1
some formal power series U. Pick a € Supp(E,(x)),

Supp(U(x?)) = Supp(>. E.(x)nT(z)" 1) 2 a+(n—2)d+ Supp(T(x)).

n>1



Here, (n — 2)d is an element of Supp(T'(x))" 2, the two addition '+’
means add this element to all element of Supp(T'(x)).

Observe for any positive integer m, ged(m + Supp(T'(z)))|g. If n €
Supp(T'(x)), then let gecd(m—+Supp(T(x))) = r, then r|(m—+n), r|[(m+
d), so r|(n — d) which implies r|q.

p = ged(Supp(U(a?))) < ged(a + (n — 2)d + Supp(T'(x))). Since

ged(a + (n —2)d + Supp(T'(x)))lq..
p<gq. N
Now we want to convert combinatorial instructions to E(x,y).

Defination 2 Given a pair of an operator ©q and a formal power
series T'(x), where © € {MSet,Seq,UCyc, DCyc} and Q2 C {1,2,...}.
Then define
EOT ()= Z (G y, T(2?),...,T(z™))
me§)

where

Sm © = MSet
E, ©=3S8e
G = ) (1)
D,, © =DCyc
\ U, O©=UCyc

Lemma 2 Suppose © s an operator built out of
e power series E(x,y) € vR>ol(x,y)],
e MSetq, Seqq, UCycq, DCycq,
® + X,o0,

and T(x) is a power series, then IE®T(x,y) such that © (T (z)) =
E®T (2,T(z)).



Proof. Define E®T inductively based on the previous definition. |

Defination 3 An operator as in Lemma 2 is called a composite oper-

ator.

Defination 4 Say a composite operator © is nonlinear if E has a term
of deg > 2 in v.

We saw 2 weeks ago (on A2) that

Lemma 3 Let © be a composite operator with the following properties:
o VT'(x), [z"]© (T(x)) depends only on [27]© (T(z)) for 1 < j <mn,
e O is bounded in the sense that VI'(x) € xR>o[(z)], © (T(z)) <
ST R (z 4+ T(x))" for some R > 0,
n=1

then T'(z) = © (T'(x)) has a unique solution, and 0 < p < oo, T(p) <

oo where p is the radius of convergence of T'(x).

Defination 5 Let T'(z) € xR>o[(x)] with radius of convergence 0 <
p < 0o. A composite operator © is open for T(x) if 3¢ > 0 such that
E®T (p+¢e,T(p) +¢) < oo.

Lemma 4 T'(z) € xR>o[(x)] with radius 0 < p < co. Then
e a) Seqq is open for T'(z) iff Q is finite or T'(p) < 1,
e b) MSetq is open for T'(x) iff Q = {1} or p <1,
o ¢c) UCycq and DCycq are open for T (z) iff
- 1)Q={1},
— 2) Q is finite and p < 1,
— 3) Q is infinite and p < 1, T(p) < 1.
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Proof. a) Seqq (T'(x)) = >, T(x)™, so E(x,y) = > y™.
me me§
If €2 is finite, this is a polynomial so is open everywhere.

If Q is infinite and T'(p) < 1, choose € such that T(p) + ¢ < 1,
Y (T(p) + €)™ converges since Y (T(p) + &)™ converges. While if

mes) m=1

T(p) =1, S (T(p)+e)" > ¥ 1=oc.

mefd me§?

b) If Q = {1}, E(z,y) = y, so open. Otherwise at least one term
involving T'(z*) with k > 2 appears, so if p > 1, p¥ > p, then diverges.
While if p < 1, then

E(z,y) < eVeap (T(x™)).

Since M Setqg I MSet, and when we did the Pdlya stuff we checked
this is open at (p, T(p)).

c) First DCycq.
If Q ={1}, E(x,y) = y, so it is ok. Suppose not, then as for MSet,
a T'(z*) with & > 1 must appear and so p < 1 is necessary.

Write E(z,y) = >, =y™+>. @ S 1T (%), where the first part
mes) k>2 j-keQ J
is A(y) and the second part is B(x).

If Q is finite then A(y) is a polynomial and if p < 1 then take ¢ so
that p+ ¢ < 1 then B(p+¢) < 0.

If € is infinite, same argument holds for B(z). The radius of con-
vergence of A(y) is 1, so as in the other parts, T'(p) < 1 is necessary
and sufficient for A to be open at T'(p).

For UCyc.

m—1

4 T(2)*T(2?)™  m =2k

UCycq (T (z)) = %DCycn (T(:z:))+1 > { 2T (x)T(2*)"s m =2k +1
mef) (2)

For E' this last part becomes



Z ( 2)m—1 _ ok n 1 (3)
4= T4 T2 mo=2k
Because of the DCyc part, the conditions for DC'yc are necessary

for UCyc, but the extra part requires only p < 1, so they are also

sufficient. |
Lemma 5 The property of being open at T'(x) is closed under +, X, o.

Proof. Just work with the E®T.

Defination 6 Let O be the set of composite operators built from

o E(x,y) € Z>o[(z,y)], £(0,0) = 0, E is open where it converges

and bounded as in Lemma 3,

o MSetq, Seqq,UCycq, DCycq, where for UCyc, DCyc €} is finite
or . L =o0,

mef)

e using +, X, o.

Lemma 6 Let © € O, T(z) € xR>o[(x)] with radius 0 < p < 1.
Suppose T'(p) < oo and O(T)(p) < oco. Then © is open for T.

Proof. By induction based on Lemma 4 and Lemma 5. The only
problem is UCycq, DCycq with € infinite.

In this case, we only need to check T'(p) < oo, but ) % = 00,
mes
so O(T)(p) < oo implies (the A(y) part) that > T(T’r)l)m converges, so
mes)

T(p) < 1. "

Theorem 1 Let © € O, suppose © is nonlinear and [2"]|O (D(x)) de-
pends only on [27]10 (D(x)) for1 < j < n. A(x) € xR>o[(x)] is finite at
its radius of convergence. Then 3 a unique T'(x) € zR>o[(x)] such that
T(x) = A(z) + O (T(z)) and [z"]T(z) ~ Cp"n"2 for n = d mod p
and 0 otherwise (d, q from beginning).
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Proof. Let © = A(x) + O(y) then © € O.

By Lemma 3, 3 unique T'(z) such that T'(z) = A(x) + © (T'(x))
and 0 < p < oo, T(p) < co. By integer coefficients, we further get
p < 1. By Lemma 2, we have Eé’T(:c,y) = A(z) + E®T(2,y) and
T(z) = EOT(2,T(2)).

Now we just need to check the hypothesis of the first proposition of
the day.

A(O) = 0, and A(z) is finite at its radius of convergence. So A # 0,

@) £ () 50 E® dES (z.y) £ 0.
And finally we get operators by Lemma 6. ]

Note:

e The corresponding labelled theorem is true and easier.

e Get interesting examples T'(x) = z 4+ 2z X MSet(DCycprime(D 2" -
) + 28).

e Constant C' is actually explicit.
e Ref. as same as before, this is the main theorem from the paper.

e If you have an Eg. that doesn’t fit in the frame work you’ll need to

actually integrate. See '+ S for a wide variety of useful models.

e What about PSet?
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